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Abstract. In bond percolation on a lattice with p > p c ,  there are unoccupied bonds which, 
if occupied, would immediately join the backbone. In general, when such a bond is 
occupied, several ‘tag e n d  bonds may join the backbone as well. We define n, to  be the 
number of bonds that would join the backbone if such a bond i were occupied and A to 
be the average of n, taken over all such bonds on the lattice. We derive a formula for A 
and find that for all lattices, near p c ,  A = yspc( p - p c ) - ’ ,  where ys is the exponent for the 
divergence of the backbone fraction. Identical formulae apply to site percolation. 

Near above the percolation threshold in bond or site percolation on an infinite lattice, 
the percolation fraction P, the backbone fraction B and conductivity G obey relations 
of the form [l-31 

(1) 

Here p is the fraction of bonds (or sites) randomly occupied, p c  is the percolation 
threshold, yx is the exponent for X ,  thought to be identical for all networks of a given 
dimensionality [2-53, and kx,  the pre-exponential factor for the variable of interest, is 
determined by the given network geometry. Estimated values of ye,  the backbone 
fraction exponent, and of p c  for various networks in site and bond percolation are 
listed in table 1. The backbone fraction is the fraction of bonds (or sites, in a site 
percolation problem) that could conduct current if a voltage drop were imposed across 
the network. 

We are interested here in the voltage drop across unoccupied (insulating) bonds or 
sites on an infinite lattice above the percolation threshold. Our interest arises from the 
problem of mobilising foam lamellae in porous media that block the flow of gas as 
missing bonds block the flow of electricity [ 131. Similar conductivity problems have 
been addressed: the maximum voltage drop across occupied bonds in the lattice above 
p c  [14-171 and the maximum voltage drop across unoccupied bonds near below p c ,  
where the occupied and unoccupied bonds are, respectively, conductors and insulators 
[ 141 or superconductors and conductors with finite resistivity [ 151. 

Our problem differs from these in that an infinite cluster of finite conductivity 
exists, and we focus on missing bonds or sites that block clusters of dendritic or ‘tag 
end’ bonds (sites) from joining the backbone. In this letter we focus not on voltage 
drop per se but on cluster size, and not on the largest cluster, but on the average 
cluster; and we find that the average cluster size follows a particularly simple form of 
(1). 

We proceed for a bond percolation problem, but the arguments are identical for 
site percolation. Above the percolation threshold there are unoccupied bonds which, 

x = M p  - p c I Y y  X = P, B or G. 
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Table 1. Percolation threshold and backbone exponents for 2D and 3D networks": ( a )  ZD 
networks: y,-0.51 *0.03b; ( b )  3D networks: ys- 1.11 *0.05b; (c )  Bethe tree': y, =2 .  

Percolation threshold 

Network Site percolation Bond percolation 

(a) 
Triangle 
Square 
Hexagon 
Diamond 
Voronoi 

( b )  
Simple cubic 
Body-centred cubic 

Face-centred cubic 
Voronoi 

(C) 
Percolation threshold = l / ( z  - 1) 
z = coordination number 

BCC2e 

0.696 2 
0.592 75 
0.500 0 
0.428 
0.5d 

0.311 7 
0.245 
0.168 6' 
0.198 
0.145 3' 

0.652 71 
0.500 0 
0.347 29 
0.388 
0.332d 

0.249 2 
0.178 5 
0.099 1' 
0.119 
0.082 2' 

a Unless noted, estimates are from [6]. 
Reference [7]. See also [8-111. 
Reference [12]. 
Reference [9]. 

e Body-centred cubic with bonds between second-nearest neighbours. 
' Reference [ 101. 

( a )  I b )  

Figure 1. ( a )  Bond percolation. 143 bonds out of 242 are occupied: backbone (-) 111 
bonds; dendritic (.  . , )  31 bonds; isolated (-) 1 bond. 99 bonds are unoccupied, of  
which 73 are b* bonds (*). ( b )  Site percolation. 469 out of 625 sites are occupied: backbone 
(-O--) 431 sites; dendritic (.  . . . .) 30 sites; isolated (a-) 8 sites. 156 sites are 
unoccupied, of which 146 are b* sites (*). 
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if occupied, would immediately join the backbone fraction. We call these bonds b* 
bonds here. Examples are shown for percolation problems on a square lattice in figure 
1. In general, if such a bond were occupied, not only it, but possibly several previously 
occupied but dendritic or ‘tag end’ bonds, would join the backbone. At a given p there 
are many b* bonds, which we number i through Nh, on a lattice and associated with 
each is the pathway of size ni of bonds that would be added to the backbone if that 
bond were occupied. (If only the b* bond itself would join the backbone if it were 
occupied, ni = 1). We derive here an expression for the average number of bonds in 
these pathways, A, averaged over all b* bonds in the network: 

A - ( ;  i = l  n i ) N i l .  

We derive a formula for A as follows. If an unoccupied bond is occupied, one of 
two events occurs. If the newly added bond does not join the backbone, then the 
backbone fraction is unchanged. If the newly occupied bond does join the backbone, 
the expected increase in the backbone population is A. This is the same average A as 
defined by (2), because any b* bond could be the next added with equal probability. 
Among the ensemble of sequences of adding bonds to reach a given configuration, 
any of the bonds could have been added last with equal probability; thus the probability 
that the last bond added joined the backbone is B / p ,  the fraction of all occupied bonds 
that are backbone bonds. Therefore 

Equation (3) implies that the fraction of unoccupied bonds that are b* bonds equals 
the fraction of occupied bonds that are backbone bonds. In other words, the probability 
that the next bond added joins the backbone is the same as the probability that a bond 
removed reduces the backbone. This is roughly true for the small network realisations 
given in figure 1. It remains to confirm this implication, however, with Monte Carlo 
studies on large networks. Rearranging (3) 

d In B A=p- 
dP * 

From (l), near pc, 

lim ~=p,y , (p-p , ) - ’ .  
P’PC 

(4) 

(5) 

Equation (5) applies to site or bond percolation on lattices of any dimensionality. 
In contrast to P, B and G, the pre-exponential factor for A is a simple product of the 
exponent for the backbone fraction, thought to be identical for all lattices of given 
dimensionality [2-51, and the percolation threshold, which is tabulated for a variety 
of lattices. The exponent for A is (-1) for all lattices. Thus, using the quantities in 
table 1, one can determine A(p) near pc for a wide variety of networks. Equations (4) 
and (5) for A are similar to those for the number of ‘cutting’ or ‘red’ bonds, without 
which the two ends of a cluster the size of the correlation length become disconnected 
[18-201. Indeed, for that case as well the pre-exponential factor near pc is a simple 
product of p c  and a critical exponent. 

We thank V V Palciauskas and A A Heiba for useful discussions on this subject. 
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